

EOS MLS Upper Tropospheric and Lower Stratospheric Ozone Validation by Sonde Measurements & Other Ground-Based Datasets

Yibo Jiang¹, L. Froidevaux¹, A. Lambert¹, N. J. Livesey¹, W. G. Read¹, J.W. Waters¹, B. Bojkov²

¹Jet Propulsion Laboratory, California Institute of Technology

² NASA Goddard Space Flight Center

+ other contributors (lidar data, JPL team)

Ozone Sonde Site Distribution (used in this analysis)

Available data from AVDC

- Good coverage in tropics and northern hemisphere
- Poor coverage in southern hemisphere, Europe and Asia

Sample Profile Comparisons

- Coincidence Profiles
 - Same day
 - Location within
 1º latitude
 12º longitude
- Least-squares fit is used here to fit the sonde profiles to the MLS vertical retrieval grid

Scatter Plots (color coded by latitude)

MLS V1.5 & Sondes

- Good correlation except at 316 hPa in equatorial and subtropics region (black, green, red)
- Upper stratospheric sonde data quality probably influences poorer comparisons there

Globally-averaged comparisons MLS V1.5 & Sondes

 The average differences are fairly constant in time

Latitude Distribution (at different pressure levels)

MLS V1.5 & Sondes

- There is generally good tracking versus latitude down to 215 hPa
- The differences are most often within 20% or better down to 215 hPa, except in the tropics

Latitude Distribution (Column Ozone for LS)

MLS V1.5 & Sondes

Many differences are within 3%;
 need to look at the larger differences
 more carefully

MLS Ozone v2.1, v1.5 & Sondes

- Based on 17 days of MLS v2.1 data
 58 coincidence profiles (available on AVDC)
- MLS v2.1 O3 shows better agreement with sonde data than v1.5
- within 5% from ~ 20 to 100 hPa
- 10% in US, MLS biased lower
- still biased high in UT, but improved over v1.5
- Upper stratospheric sonde data quality probably influences poorer comparisons there
- As for comparisons vs satellite data, we see the change in slope for MLS v2.1

Comparisons with O3 LIDAR Data

Times Series of MLS Ozone v1.5 & LIDAR

- 2 Long-term LIDAR Measurement Sites
 - •Table Mountain(34.5N, 117.7W)
 - •Mauna Loa(19.5N, 155.7W)
- Seasonal Cycles can be seen in both datasets at 15 hPa
- •MLS and LIDAR are tracking each other very well at 100 hPa in Table Mountain even data has large variability

 Mauna Loa

Table Mountain

Pres=100 hPa

Pres=15 hPa

Comparisons with O3 LIDAR Data

MLS Ozone v2.1, v1.5 & LIDAR

- Based on 17 days of MLS v2.1 data
 18 coincidence profiles (available on AVDC)
- MLS v2.1 O3 shows better agreement with LIDAR data than v1.5
- v2.1 lidar within 5-10%
 for P between 215 and 0.7 hPa
- MLS sondes differences near 10 hPa is not observed in LIDAR comparison
- MLS is biased high at 315 hPa

Aura MLS Ozone UT/LS Validation

Summary

MLS V2.1 Data

- V2.1 shows better overall agreement than V1.5 compared to sondes & LIDAR
- The differences between MLS and sondes are within 10%, except at pressure 215 & 316 hPa based on 17 days available MLS v2.1 data
- MLS v2.1 and LIDAR within 5-10% for P between 215 and 0.7 hPa
- There is still a high bias in UT especially in tropics

Aura MLS Ozone UT/LS Validation

Summary (cont.)

Validation plans and paper

- Would be good to add more sondes data from European sites
- Some issues with lidar data files (now on AVDC)

Comparisons with others datasets

 Ground-Based Microwave Data (some work presented by others at Sep. 2005 meeting)

Please discuss any related plans for validation papers (for JGR special issue) with MLS team